(05 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fourth Semester B.E. Degree Examination, Dec.2013/Jan.2014 **Material Science and Metallurgy**

Max. Marks:100 Time: 3 hrs.

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define atomic packing factor and calculate atomic radius and packing factor for FCC 1 (08 Marks) structure.
 - With neat sketches, explain the different types of point imperfections. (08 Marks)
 - State and explain the second Fick's law of diffusion. (04 Marks)
- Draw the stress-strain curve for mild steel under tension and show the elastic region, plastic 2 (05 Marks) region.
 - Define the following:
 - Stiffness i)
 - Elastic strength ii)
 - (iii Resilience
 - Modulus of resilience iv)
 - Toughness. (10 Marks) v)
 - c. Differentiate between slip and twinning.
 - (05 Marks)
- With neat sketches, explain the stages of moderately ductile fracture under the action of 3 a. (08 Marks)
 - What is meant by stress relaxation? Explain in briefly. b.
 - Explain the various factors affecting fatigue. (07 Marks)
- Define solid solutions. Explain the types of solid solutions with neat sketches. (10 Marks) a.
 - Explain the factors governing the formation of substitutional solid solutions. (05 Marks) b.
 - State the Gibb's phase rule and explain the terms. (05 Marks)

PART - B

- Draw and explain the Iron-Iron carbide equilibrium diagram and label all the points and 5 a. fields. (10 Marks)
 - Two metals A and B have their melting points at 600°C and 400°C respectively. These metals do not form any compound or inter mediate phase. The maximum solubility in each other is 4%, which remains the same until 0°C, an eutectic reaction takes place between 65% A and 35% B at 300°C.

Determine the following:

- Draw the phase diagram of A B and label all the important points and fields. i)
- ii) Find the temperature at which a 20% A, 80% B alloy starts and completes solidification.
- Find the temperature at which the same alloy is composed of 50% liquid and 50% iii) solid. (10 Marks)

10ME/AU42A

6	a.	Draw the T-T-1 diagram for 0.8% C entectoid steel and explain briefly.	(10 Marks)
	b.	Define hardenability. Explain with a neat sketch the Foming-end-quench test.	(05 Marks)
	c.	Explain with neat sketch the flame hardening process.	(05 Marks)
7	a.	Write the composition, structure and their applications of	
		i) White cast iron.	
		ii) Malleable iron.	
		iii) S.G. iron.	(10 Marks)
	b.	Write the composition and properties of the following:	
		i) Yellow α - brasses	
		ii) Alpha brasses	
		iii) Admiraltry brass.	(10 Marks)
8	a.	Define composite material and explain the classification of composite materials.	(10 Marks)
	b.	What are the advantages and limitation of composite material?	(06 Marks)
	c.	Write a brief note on FRP.	(04 Marks)

* * * *